This dashboard is created using HTML, CSS, and the data is pulled, prepared, and visualized using R.
This is for demonstration purposes only. The data used is pulled from a public source, specifically the GoodCarBadCar website - https://www.goodcarbadcar.net/ford-motor-company-us-sales-figures/.
Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2005 | 183379 | 234208 | 281906 | 260741 | 263949 | 265698 | 343768 | 266798 | 209587 | 182417 | 185852 | 244989 |
2006 | 189817 | 226291 | 268123 | 242877 | 256755 | 246815 | 221491 | 235920 | 220877 | 198130 | 164170 | 212703 |
2007 | 151416 | 194310 | 243541 | 209694 | 239579 | 228376 | 177167 | 200401 | 173554 | 179652 | 166565 | 191729 |
2008 | 145435 | 181808 | 209714 | 185434 | 200372 | 163769 | 154527 | 150006 | 114519 | 126600 | 116756 | 132247 |
2009 | 89085 | 94035 | 122605 | 126385 | 153437 | 144357 | 157198 | 175274 | 107811 | 131211 | 117212 | 176061 |
2010 | 110716 | 134925 | 174949 | 160928 | 188793 | 168328 | 165019 | 156090 | 158613 | 156181 | 145367 | 188825 |
2011 | 125141 | 153513 | 209439 | 186725 | 189137 | 190540 | 178822 | 173573 | 172788 | 165484 | 164659 | 206790 |
2012 | 135532 | 352164 | 220491 | 175919 | 212089 | 205206 | 172396 | 195808 | 172359 | 166957 | 175880 | 210876 |
2013 | 164777 | 193462 | 233409 | 208787 | 242860 | 233538 | 192212 | 219574 | 183176 | 189554 | 187642 | 214504 |
2014 | 152292 | 181996 | 241475 | 207700 | 249574 | 219741 | 210519 | 221024 | 179335 | 187809 | 186255 | 219225 |
2015 | 177382 | 179648 | 234774 | 221603 | 250077 | 224671 | 222009 | 233879 | 221261 | 213103 | 186822 | 237606 |
2016 | 172398 | 216792 | 253064 | 229739 | 234748 | 239096 | 215268 | 213410 | 203444 | 187692 | 196441 | 237785 |
2017 | 171186 | 207464 | 234895 | 213436 | 240250 | 227166 | 199318 | 209029 | 221643 | 199698 | 210205 | 240910 |
2018 | 160411 | 194062 | 243021 | 208109 | 241527 | 229537 | 192743 | 217700 | 196496 | 191682 | 195255 | 219632 |
2019 | 188882 | 185353 | 208523 | 209639 | 241889 | 187511 | 189476 | 212214 | 174317 | 197153 | 204431 | 197144 |
2020 | 167146 | 216395 | 131072 | 77815 | 172928 | 181572 | 192536 | 171144 | 185405 | 181820 | 148816 | 0 |
---
title: "Dashboard by Ryan Pierce"
date: "As of `r format(Sys.time(), '%B %d, %Y')`"
output:
flexdashboard::flex_dashboard:
navbar:
- { icon: "fa-envelope", href: "mailto:r.pierce521@gmail.com", align: right }
- { icon: "fa-linkedin", href: "https://www.linkedin.com/in/ryan-a-pierce", align: right }
- { icon: "fa-github", href: "https://github.com/ryanapierce", align: right }
- { icon: "fa-window-restore", href: "https://ryanapierce.github.io", align: right }
logo: logo.png
source_code: embed
orientation: rows
vertical_layout: fill
---
```{r setup, include=FALSE}
library(flexdashboard)
library(knitr)
library(plotly)
library(leaflet)
library(readxl)
library(tidyverse)
library(dplyr)
library(lemon)
knit_print.data.frame <- lemon_print
```
```{r}
rawdata <- read_excel("R_Assets/Sample_Ford_Data.xlsx")
data <- select(rawdata, -1)
Values <- rowSums(data)
YRdata <- data.frame("Year" = c(2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020))
TotalData <- cbind(Values, YRdata)
newdata <- rawdata[-c(1:14), ]
```
Sales Summary
=====================================
-------------------------------------
This dashboard is created using HTML, CSS, and the data is pulled, prepared, and visualized using R.
This is for demonstration purposes only. The data used is pulled from a public source, specifically the GoodCarBadCar website - https://www.goodcarbadcar.net/ford-motor-company-us-sales-figures/.
-------------------------------------
### Ford Sales by Year
```{r}
lineg <- plot_ly(x = TotalData$Year, y = TotalData$Values, mode = 'lines')
fig <- lineg %>% layout(title = 'US Sales per Year',
xaxis = list(title = 'Year'),
yaxis = list (title = 'Sales ($)'))
fig
```
### Sales V. Prior Year
```{r}
prior <- newdata[1,2:13]
current <- newdata[2,2:13]
Mdata <- data.frame("Month" = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
prior_transpose <- as.data.frame(t(as.matrix(prior)))
colnames(prior_transpose) <- "values"
PriorData <- cbind(prior_transpose, Mdata)
current_transpose <- as.data.frame(t(as.matrix(current)))
colnames(current_transpose) <- "values"
CurrentData <- cbind(current_transpose, Mdata)
linem <- plot_ly(x = PriorData$Month, y = PriorData$values, type = 'scatter', name = '2019', mode = 'lines')
linem <- linem %>% add_trace(y = CurrentData$values, name = '2020', mode = 'lines')
fig <- linem %>% layout(title = 'US Sales V Prior Year',
xaxis = list(title = 'Month',
categoryorder = "array",
categoryarray = PriorData$Month),
yaxis = list (title = 'Sales ($)'))
fig
```
Raw Data
======================================
```{r}
kable(rawdata)
```